NEW 1,1-AMINO HYDROPEROXIDES FROM REGIOSELECTIVE OXYGENATION OF 4-(N-ARYLMETHYLENEAMINO)-2,6-DI-t-BUTYLPHENOLS.

A. Nishinaga,* T. Shimizu, and T. Matsuura Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

The oxygenation of 4-(N-arylmethyleneamino)-2,6-di-<u>t</u>-butylphenols with Co(Salpr), a five coordinate Co(II) Schiff base complex, in CH_2Cl_2 results in the regioselective hydroperoxylation at the imino carbon to give N-(1-aryl-1-hydroperoxymethyl)-3,5-di-<u>t</u>butyl-<u>p</u>-benzoquinone monoimines, which give exclusively the corresponding amides and 2,6-di-<u>t</u>-butyl-<u>p</u>-benzoquinone in an aerobic solution of KOH in 90% EtOH.

The regioselective dioxygen incorporation into <u>t</u>-butylated phenols is efficiently mediated by five coordinate Co(II) Schiff base complexes, Co(Salpr) and its derivatives: 4-alkyl-2,6-di-<u>t</u>-butylphenols are exclusively oxygenated at the para position whereas only the ortho position is attacked by dioxygen with 4-aryl-2,6-di-<u>t</u>-butylphenols leading to the corresponding peroxyquinolato Co(III) complexes.^{1,2} The same regioselectivity has been observed in the base-catalyzed oxygenation of these phenols,^{3,4} strongly suggesting the same mechanism being operated in both the oxygenations. We have recently reported that the base-catalyzed oxygenation of 4-(N-arylmethyleneamino)-2,6-di-<u>t</u>-butylphenols (<u>1</u>) effectively obtained by the condensation of 2,6-di-<u>t</u>butyl-<u>p</u>-benzoquinone with arylmethylamines provides a new route to amides from amines.⁵ It is now found that the oxygenation of <u>1</u> with Co(Salpr) in CH₂Cl₂ gives new 1,1-amino hydroperoxides <u>2</u> resulting from the selective dioxygen incorporation into the imino carbon in <u>1</u>.

HO HO HO HO N=CH-R $\frac{0_2/Co(Salpr)}{CH_2Cl_2, 0 \circ C}$ $\frac{1}{2}$ $\frac{2}{2}$ a; R = Ph b; R = 4-MePh c; R = 4-MeOPh d; R = 4-ClPhe; R = 2-Furyl

Co(Salpr)

Little has been known about secondary 1,1-amino hydroperoxide formation by oxygenation.⁶

Oxygen was bubbled through a solution of $\underline{1}$ (1 mmol) in CH₂Cl₂ (20 ml) containing Co(Salpr) (1.1 mmol) at 0 °C. The reaction was normally complete within 1 h. The TLC analysis of the reaction mixture showed only one product being formed, which was isolated by filtration of the resulting reaction mixture through a short column of silica gel (5 g) at -78 °C and evaporation of the filtrate <u>in vacuo</u> at 0 °C. Triturating the resulting residue with pentane gave N-(1-aryl-1-hydroperoxymethyl)-3,5-di-<u>t</u>-butyl-<u>p</u>-benzoquinone monoimines ($\underline{2}$)¹⁰ as crystals in excellent yield (Table 1). In the IR spectra of $\underline{2}$, the ν_{OH} band for the OOH group appears at around 3100

Table	1.	Synthesis	and	Physical	Data	of	2
-------	----	-----------	-----	----------	------	----	---

2	Yield ^a	mp(dec) ^b	IR(KBr), cm ⁻¹		٦	$3), \delta c d$			
5	(%)	(°C)	<u>он</u>	[∨] C=0	[∨] C=N	t-Bu	С-Н	C=CHC C=CH	00H
<u>2a</u>	89	115	3070	1653	1638	1.19 1.20	6.62	6.89 ^e 6.94 ^e	11.65
<u>2</u> ₽	74	80	3100	1653	1636	1.20	6.60	6.90 ^f 6.95 ^f	11.58
<u>2c</u>	85	76	3110	1653	1638	1.19	6.58	6.89 ^f 6.95 ^f	11.20
<u>2</u> ₫	71	78	3100	1655	1638	1.20	6.59	6.88	11.27
<u>2</u> ₽	74	67	3080	1653	1637	1.20 1.23	6.60	6.86 ^g 6.93 ^g	10.75

^a Yields by isolation. ^b All products show satisfactory analytical results: C, \pm 0.20%; H, \pm 0.25%; N, \pm 0.27%. ^C syn to R, a doublet. ^d anti to R, a doublet. ^e J = 1.5 Hz. ^f J = 2.5 Hz. ^g J = 2.0 Hz.

cm⁻¹, the low frequency being due to a strong hydrogen bonding to the imino group.⁷ The ¹H NMR spectra of $\frac{2}{2}$ (Table 1) are all in good agreement with the structures. Two olefinic protons in the quinoid ring are nonequivalent except for $\frac{2}{2}$, the assignment, chemical shift values, and coupling constants are quite similar to those observed in other quinone monoimines.¹¹ The unusual low field shift of the hydroperoxy group corresponds to its IR band shift. The compounds $\frac{2}{2}$ liberate I₂ quantitatively from an acidic solution of iodide. The reduction of $\frac{2}{2}$ with Me₂S at 0 °C gave 4-(N-benzoylamino)-2,6-di-t-butylphenol ($\frac{4}{2}$) (24% yield),¹² benzaldehyde (76% yield), and 3,5-di-t-butyl-p-benzoquinone monoimine ($\frac{5}{2}$) (76% yield).¹³ No corresponding 1,1-amino alcohol $\frac{3}{2}$ was not detected in the reaction mixture, indicating that $\frac{3}{2}$ is quite unstable to undergo

isomerization to $\frac{4}{2}$ as well as decomposition to benzaldehyde and $\frac{5}{2}$. These results also support the structure $\frac{2}{2}$. In the present oxygenation, peroxy cobalt(III) complexes corresponding to $\frac{2}{2}$ should be formed taking into account the results obtained in the Co(Salpr) mediated oxygenation of 2,6-di-<u>t</u>-butylphenols.^{1,2} Attempts to isolate such peroxy cobalt(III) complexes, however, were not successful.

The hydroperoxides $\underline{2}$ are readily decomposed by acid- and base-catalyses. In an aerobic solution of KOH in 90% EtOH at 0 °C, $\underline{2}\underline{a}$ gave 2,6-di-<u>t</u>-butyl-<u>p</u>-benzoquinone ($\underline{6}$) and benzamide in nearly quantitative yields. This strongly suggests that the excellent formation of benzamide in the oxygenation of $\underline{1}\underline{a}$ in the KOH-EtOH system⁵ involves the anionic form of $\underline{2}\underline{a}$ as the intermediate. In order to clarify the mechanism of this interesting decomposition of $\underline{2}$ to the corresponding amides, the base-catalyzed decomposition of $\underline{2}\underline{a}$ under water and oxygen free conditions has been investigated. Under these conditions, $\underline{2}\underline{a}$ gave a mixture of $\underline{4}$, N-benzoyl-3,5-di-<u>t</u>-butyl-<u>p</u>-benzo-quinone monoimine ($\underline{7}$), ¹⁴ $\underline{6}$, and benzamide. The ratio of these products depends on the reaction

conditions employed (<u>Table 2</u>). The quinone imine \underline{I} is quite unstable in an aqueous alkaline

lable 2.	Base-Latalyzed	Reaction	i of <u>2a</u> ."		
Solvent	Base	Pro			
	Dase	<u>4a</u>	<u>6</u>	<u>7</u>	PhCONH2
DMF	<u>t</u> -BuOK	40	25	20	_b
THF	<u>t</u> -BuOK	30	15	50	-p
<u>t</u> -BuOH	<u>t</u> -BuOK	15	50	15	- ^b
90% EtOH ^C	кОН (О °С)	0	9 5	0	95

^a Reaction conditions: <u>2a</u> (0.5 mmol), Base (1.5 mmol), Solvent (10 ml), 30 min at 25 °C under nitrogen unless otherwise noted. Yields were determined by NMR. ^b Not determined. ^C An aerobic solution.

solution (KOH in 90% EtOH) imidiately to give PhCONH₂ and $\underline{6}$. The phenol $\underline{4}\underline{a}$ is easily oxidized to $\underline{7}$ in an aerobic nonaqueous basic solution.

The following mechanism can, therefore, be depicted for the quantitative conversion of 2 to

 $\underline{6}$ and benzamide, which may also implicated in the base-catalyzed oxygenation of $\underline{2}$ leading to the new amide synthesis.⁵ An acid-catalyzed reaction of $\underline{2}$ gave a complex reaction mixture.

<u>Beferences</u> and <u>Notes</u>

- (1) A. Nishinaga, K. Nishizawa, H. Tomita, and T. Matsuura, J. Am. Chem. Soc., 99, 1287 (1977)
- (2) A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett., 2893 (1979).
- (3) A. Nishinaga, T. Itahara, T. Shimizu, and T. Matsuura, J. Am. Chem. Soc., 100, 1820 (1978).
- (4) A. Nishinaga, T. Itahara, T. Matsuura, A. Rieker, D. Koch, K. Albert, and P. B. Hitchcock, J. Am. Chem. Soc., <u>100</u>, 1826 (1978).
- (5) A. Nishinaga, T. Shimizu, and T. Matsuura, J. Chem. Soc. Chem. Commun., in press
- (6) Tertiary 1,1-amino hydroperoxides are known for photooxygenations of heterocycles⁷ but only two examples of secondary 1,1-amino hydroperoxides have been reported for addition of H₂O₂ to imines⁸ and autoxidation of amides.⁹
- (7) R. Ramasseul and A. Rassat, Tetrahedron Lett., 1337 (1972) and references cited therein.
- (8) Hoeft and A. Rieche, Angew. Chem., <u>77</u>, 548 (1965).
- (9) B. F. Sager, J. Chem. Soc. (B), 428 (1967).
- (10) The hydroperoxides <u>2</u> are fairly stable but decompose upon standing at room temperature for several days.
- (11) A. Rieker and H. Kessler, Tetrahedron, <u>23</u>, 3723 (1967); J. Bracht and A. Rieker, Synthesis, 708 (1977).
- (12) Colorless prisms: mp 212-214 °C: ¹H NMR (CDCl₃); δ 1.43 (s, 18 H, <u>t</u>-Bu), 5.03 (s, 1 H, OH), 7.33 (s, 2 H, C=CH), 7.3-7.9 (m, 5 H, Ph): IR (Nujol); 3650 (OH), 3300 (NH), 1640, 1545 (CON-) cm⁻¹. Anal: C, ± 0.27%; H, ± 0.15%; N, ± 0.07%.
- (13) <u>p</u>-Benzoquinone monoimine $\underline{5}$ could not be isolated but the TLC and NMR spectrum of the reaction mixture showed that only the three products were formed. A signal at 6 6.77 (s, 2 H, C=CH) along with δ 1.28 (s, 18 H, <u>t</u>-Bu) should be assigned for $\underline{5}$. The silica gel chromatography of the reaction mixture, however, gave only the quinone $\underline{6}$ [δ 6.47 (C=CH), 1.28 (<u>t</u>-Bu)] except for $\underline{4}$ and PhCHO, indicating that $\underline{5}$ is quite unstable under the chromatographic conditions.
- (14) Yellow liquid: bp ca. 130 $^{\circ}C/10^{-2}mmHg$: ¹H NMR (CDCl₃) & 1.25 (s, 18 H, <u>t</u>-Bu), 6.77 (s, 2 H), 7.3-8.1 (m, 5 H, Ph): IR (film); 1650, 1625, 1585 cm⁻¹: UV; $\lambda_{max}^{C6H_{12}}(\log \epsilon)$ 280 (4.43), 234 (4.07) nm. Anal: C, ± 0.12%; H, ± 0.09%; N, ± 0.01%.

(Received in Japan 28 December 1979)